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A recent paper by Bramley and Sloan (Computers and Fluids 15, 297 (1987)) describes a 
numerical solution for two-dimensional flow of a viscous, incompressible fluid in a branching 
channel. A grid generation algorithm was used to map the solution region onto a rectangle 
and an upwind finite difference scheme was then used to solve the Navier-Stokes equations in 
terms of stream function and vorticity. Here we extend the earlier work by describing an 
efftcient solution of the problem using a nonlinear multigrid algorithm. Of particular interest 
is the treatment of the boundary conditions in a manner which does not destroy the interior 
smoothness in the neighbourhood of the boundary. % 1988 Academic Press, Inc. 

1. INTRODUCTION 

Bramley and Sloan [2] have described a numerical method, using boundary- 
fitted coordinates, for treating the steady, two-dimensional flow of a viscous, 
incompressible fluid in a branching channel. A typical configuration is given in 
Fig. 1. The fluid flows horizontally from the left through a uniform channel which 
has a normalised width of 2 units. The channel divides into two symmetrically 
placed channels, each of width d units, and the branching angle between t 
channels is 20. Symmetry is used to restrict the solution domain to the cha 
regions on and above the horizontal axis through the branching point, and this is 
the domain shown in Fig. 1. The slope of the channel wall is continuous 
upper boundary where the direction alters, and also at the branching point, 
fluid vorticity is infinite at points where the boundary slope is discontinuous, ,and 
boundary-fitted coordinates have been used to remove such points. The method 
used to remove the sharp corners is described in detail in Bramley and Sloan [2]. 

One of the main motivations for numerical studies of fluid flow in bifurcation 
channels arises from the interest in blood flow through branching arteries. 
Investigations have shown that regions commonly associated with arterial disease 
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FIG. 1. Solution region in the (x, y) plane. 

coincide with regions of reversed or stagnant flow. Low local velocity is one of the 
causes of blood coagulation within arteries. Many studies have therefore concen- 
trated on fluid separation or recirculation and, in particular, on the influence of 
Reynolds number on these phenomena. Some of the early studies of flow in 
branching arteries are referred to in the paper by Bramley and Dennis Cl]. Exam- 
ples of some recent studies are cited in the paper by Perktold and Hilbert [S], 
which describes a finite element method for pulsatile flow through a model of the 
human carotid bifurcation. 

The present study does not seek to gain further insight into flow phenomena. The 
objective is to describe an efficient, nonlinear, multigrid algorithm for solving the 
vorticity-stream function formulation of the Navier-Stokes equations applied to 
this type of channel flow. A recent paper by Lacroix et al. [S] describes work which 
had a similar objective. However, their choice of difference scheme gave rise to a 
relaxation process which failed to converge for Reynolds numbers greater than 200. 
Furthermore, the scheme which they adoped for boundary relaxation probably had 
a deleterious effect on the multigrid performance. Of particular interest in the 
present study is the relaxation process used for the vorticity boundary conditions. 
Extensive numerical experiments culminated in the adoption of suggestions made 
by Stuben and Linden [9] concerning a form of boundary relaxation which does 
not destroy the interior smoothness. The final choice of boundary relaxation has 
produced a method which is, to a great extent, both grid and Reynolds number 
independent. Moreover, discretisation by the upwind scheme of Dennis and 
Hudson [4] has produced a multigrid method which converges for Reynolds 
numbers as high as 1000. 
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2. GRID GENERATION AND GOVERNING EQUATIONS 

2.1~ Grid Generation 

As described in Bramley and Sloan [2] the grid generation algorithm propose 
by Thompson et al. [ 111 is used to transform the solution domain from the (x, 
plane to a rectangle in the (c$, q) plane. The transformation and the boundary-&t 
coordinates are obtained using the elliptic system 

where subscripts indicate partial differentiation. Calculations are performed on the 
rectangular domain so dependent and independent variables are interchanged in 
(2.1) to give 

where 

u=x;+y;, P=xgXa+YeY,, y=x;+y;. (2.3) 

Equations (2.2) are solved numerically on the rectangle 0 d 5 d Z%, 0 < g d J/z using 
second-order central differences on a square grid of size h. Here T and J are positive 
integers and, without loss of generality, we may set h = 1. To complete the system a 
discretisation of the boundary of Fig. 1 is used to supply Dirichlet boundary 
conditions for x and y on the rectangle 0 6 < 6 Th, 0 < q 6 Jh. The boundary 
discretisation used to generate the typical grid shown in Fig. 2 is described in detail 
in Bramley and Sloan [2] and it need not be repeated here. 

The central difference discretisation of (2.2) yields a system of nonlinear, 
algebraic equations which is solved by a multigrid algorithm. It is appropriate to 
postpone the description of the algorithm until we have presented the governing 
equations and boundary conditions for the fluid flow. These are presented in 
the next section, and the reader is referred to Bramley and Dennis [ 1] and 
and Sloan [2] for additional details. 

2.2. Governing Equations and Boundary Conditions 

The governing equations in terms of the stream function, $, and the vorticit~~ c, 
are 

(2.5) 

where a, /?, and y are defined by (2.3), Re is the Reynolds number based on the 
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FIG. 2. A typical grid generated as described in Section 2.1. 

upstream channel width and A is the Jacobian of the coordinate transformation, 
defined by 

~=x&J+x?& (2.6) 

The boundary conditions imposed on $(<, q) and c(<, q) on the boundary of the 
rectangle 0 < 5 d T/z, 0 d r <J/z are readily described by referring to Fig. 1. In the 
following text a condition associated with a boundary segment such as CB will be 
the boundary condition on the image of CB under the coordinate transformation. 

Downstream on FB the Poiseuille flow conditions are written as 

and 

(2.7) 

for 0 d v] < Jh. Poiseuille flow is also imposed upstream on EC, and this takes the 
form 

(2.9) 
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and 

for 0 < y < Jh. This is a simpler form of upstream boundary conditions t 
used by Bramley and Sloan [2]. 

On the boundaries q = 0, 9 = Jh the stream function is given by 

b45,O) = 0, $(5, Jh) = 5 O<(< Th, 

and on the mid-stream line EO the vorticity condition is 

(2.1 I) 

1(5> 0) = 0 O<<<Nh, (2.12) 

where 5 = Nh is the location of the image of 0. Finally, at the lower and upper 
walls, OF and CB, the vorticity is given by a condition proposed by Woods [12]. 
On a square grid of size h the finite difference approximation which we use for 
vorticity at the lower boundary is 

(2.13) 

Here the subscript o indicates a typical boundary node at (<, II) = (ih, 0), subscripts 
2 and 3 are nodes at (5, q) = ((i) 1) h, 0), respectively, and subscript 1 is at 
(5, q) = (ih, h). Derivatives appearing in the coeffkients are evaluated using secon 
order central differences in the l-direction and second-order, one-sided differences 
in the q-direction. The analogous condition on the upper boundary is obtained by 
negating the terms (n,j~I), and (y,,+),: subscript 1 now refers to a node at 
Ct,~lj=(&(J-l)h). 

Approximations to $ and [ are obtained using finite difference representations of 
(2.4) and (2.5), together with the Dirichlet boundary conditions (2.7))(2.12) and 
the Neumann boundary condition (2.13). The interior discretisation is based on the 
upwind scheme proposed by Dennis and Hudson [4] and it is conve~i~~~~y 
represented by a single subscript notation defined by the finite difference rnole~~~~ 

The discretisations of Eqs. (2.4) and (2.5) at node 0 are, respectively, 

d$l+ Wh* + ~o($2 + &d/h2 - SBoWs - $6 + $7 - tidlh* + (A”<), 

= 2(a, + ~0) k/h2 
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(2.15) 

where K = Re A,($, - $,)/2h, L = Re /iO( ti3 - $ ,)/2h and the subscripts indicate 
the nodes. Derivatives appearing in the coefficients are evaluated using second- 
order central differences. Bramley and Sloan [2] have commented on the artificial 
viscosity associated with the difference scheme (2.15). Our current interest is 
primarily directed at the formation of a suitable nonlinear multigrid algorithm so 
we shall not consider possible inaccuracies due to artificial viscosity. 

3. NONLINEAR MULTIGRID ALGORITHM 

3.1. General Multigrid Scheme 
Here we give a brief description of the nonlinear multigrid solution of a discrete 

problem such as that outlined in the preceding section. There are two possible 
approaches to the solution of such a nonlinear system: a global linearisation 
method combined with the use of a linear multigrid algorithm at each stage, or a 
full approximation scheme (FAS) multigrid algorithm applied directly to the non- 
linear system. We adopt the FAS approach and henceforth refer to it as a nonlinear 
multigrid algorithm. Multigrid ideas and comparisons of the two approaches may 
be found in the papers by Brandt [3] and Stiiben and Trottenberg [lo]. 

Eflicient multigrid algorithms are produced by properly constructed interactions 
between the smoothing properties of a relaxation method, such as the Gauss-Seidel 
method and coarse grid correction. Let the nonlinear system arising from the 
discretisation be denoted by 

N/LX/J =fh (N/z: G(h) -+ GUM), (3.1) 

where R, is the tine grid and G(R,)) is the space of grid functions on R,. We 
assume that N, has an inverse. 

If xi is the current approximation to xh the algebraic defect, or residual, at this 
stage is defined by 

d{ = fh - N&i). (3.2) 

Local Fourier analysis may be used to show that relaxation methods are efficient at 
reducing the amplitude of high frequency components of the error, and thus of the 
algebraic defect. The ultimate slow convergence is due to the low frequency 
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components corresponding to the largest eigenvalues of the iteration operator. 
Relaxation methods may therefore be regarded as efficient smoothers. The pri~ei~l~ 
of coarse grid correction may be seen if we rewrite (3.1) in terms of Eq. (3.2) as 

Nh(xX + yi) - Nh(xi) = dir (3.3) 

where the solution is given by x,, = xX + y X. If the high frequency components of t 
defect are negligible relative to the low frequency components we can represent 
Eq. (3.3) on a coarser grid, R,. In this context a high frequency component is one 
which cannot be represented on the coarse grid. The current approximation, .~i, 
and the defect, di, are transferred to R, by means of restriction operators to give 
grid functions xj, and di, respectively, in the space G(R,). On R, (3.3) takes the 
form 

where z~ = xh + j’,, the operator N;’ is assumed to exist and the dimension of 
G(R,) is much smaller than the dimension of G(R,). If (3.4) is solved for ZA we find 
J?‘, and interpolate to the liner grid to obtain the approximation pi to yi. The new 
approximation to x,, is then given by 

In order to represent the defect equation (3.3) on the coarser grid the defect must 
first be smoothed, and this is effected using a well-chosen relaxation process. This 
relaxation process involves a local linearisation, and this is the only linearisat~o~ 
which occurs in the multigrid algorithm. 

The multigrid method extends the idea of coarse grid correction, together with 
the use of a smoother, to a series of sequentially coarser grids. The complete mul- 
tigrid method combines the use of a relaxation method on each grid with correction 
on coarser grids. Good convergence properties can only be obtained if a suitable 
combination of these processes is used. 

3.2. Algorithms Used 

The scheme used for the solution of the grid generation equations described in 
Section 2.1 and the vorticity-stream function equations described in Section 2.2 
uses square grids on the (5, q) plane. Given any grid, the next coarser gri 
obtained by doubling the mesh size, and corrections are transferred from the 
coarser to the finer grid using bilinear interpolation. The restriction operator from 
fine to coarse grid is the full-weighting operator which has been described by 
Stiiben and Trottenberg [lo]. The coarse grid operator is similar to the fine grid 
operator, apart from the change in grid size. A fixed type, cycling, FAS algorithm 
was used, characterised by the following four parameters: 
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vi, the number of relaxation sweeps before coarse grid correction; 

v,, the number of relaxation sweeps after coarse grid correction; 

vC, the number of relaxation sweeps on the coarsest grid; 

y, the number of iterations of the multigrid algorithm for the coarse grid (y = 1 
gives V-cycles and y = 2 gives W-cycles). 

Details of the various algorithms may be found in the paper by Stiiben and 
Trottenberg [lo]. 

While all the above components are quite standard, care must be taken over the 
choice of a relaxation scheme. To solve the grid generation equations in Section 2.1 
a line Gauss-Seidel scheme is used, solving simultaneously at points on the lines 
< = constant. A local Fourier analysis suggested that this would be a suitable 
smoother, and its value in producing a fast multigrid solution was supported by 
numerical experiments. Neither point Gauss-Seidel nor line Gauss-Seidel on lines 
q = constant will give satisfactory smoothing. It is to be noted that the Dirichlet 
boundary conditions do not affect the interior smoothing rate of the relaxation 
method. 

For the solution of the fluid flow equations in Section 2.2 the relaxation scheme 
must include interior and boundary schemes, due to the Neumann boundary con- 
ditions for the vorticity on the walls. The aim in using a boundary relaxation 
scheme is to smooth the defect of the boundary equations so that the boundary 
condition can be represented on the coarse grid in the same way as the interior 
equations. However, care must be taken to ensure that the relaxation of the 
boundary equations does not destroy interior smoothness at the nodes adjacent to 
the boundary. 

The most obvious way of organising the relaxation is to relax all the interior 
equations with the boundary values held fixed and then to relax the boundary 
equations by updating the boundary values. A good interior smoothing rate can be 
achieved using an alternating line Gauss-Seidel (ALGS) iteration, but, as we shall 
see in the next section, the effect of the boundary relaxation is to force 
underrelaxation of the interior equations, with a resulting convergence rate which 
deteriorates seriously as Reynolds number increases. The boundary relaxation 
destroys the smoothness at the adjacent interior nodes, even when the solution of 
the boundary equations is included in the ALGS iteration. 

The paper by Stiiben and Linden [9] suggests a way around this difficulty by 
treating those interior points connected with the boundary condition separately 
from the remaining interior points. Here, this separate treatment is required for 
relaxation of the vorticity equation at nodes adjacent to the walls OF and CB in 
Fig. 1. Thus, the ALGS algorithm is used to relax the vorticity equation at all 
interior nodes, apart from those adjacent to the walls, and the boundary relaxation 
then deals with the equations at the boundary and adjacent points simultaneously. 
In fact, the equations at the boundary and adjacent points can be solved directly at 
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the cost of just one tridiagonal matrix inversion, since the system of equations may 
be written in the form 

where T, , T, are tridiagonal and D, , D, are diagonal matrices. 
One sweep of the relaxation method for equations (2.14), (2.15), together with 

the Woods boundary condition (2.13) is: 

One ALGS sweep with the vorticity equation (2.15) over all interior nodes, 
apart from those adjacent to the walls; 

One ALGS sweep with the stream function equation (2.14) over all interior 
nodes; 

A direct solution of the vorticity equations (2.13) and (2.15) at all nodes on the 
walls and adjacent to the walls. 

4. NUMERICAL RESULTS 

In this section we present numerical results for the solution of the Navier-Stokes 
equations of Section 2.2. Results showing the efficient multigrid solution of the grid 
generation equations are presented in Lonsdale [7] and need not be repeated here; 
we simply note that a convergence rate similar to that for the solution of Poisson’s 
equation can be achieved provided that the correct relaxation process is used, as 
mentioned in Section 2.2. 

In Section 3.2 two possibilities for the multigrid handling of the boundary 
conditions were discussed: 

fi) handling only the boundary nodes separately; 
(ii) solving for the boundary and adjacent nodes simultaneously, and 

separately from the remaining interior nodes. 

Numerical results for both methods (i) and (ii) are presented, and it will be shown 
that method (ii) should be the approach adopted for the problem present 
Section 2.2. The results for method (ii) are then compared with those obt 
using a single grid to emphasise the gain in efficiency achieved by using a xn~ltigri~ 
algorithm. 

In presenting results, several parameters remain fixed throughout. The specific 
case of the branching channel geometry was that given by an angle 8 = 45” with 
channel width d = 4 and upstream and downstream channel lengths of 3 units 
and 20 units, respectively (see Section 1). Three grid sizes were used as the finest 
grid in numerical experiments: 257 x 33, 129 x 33, and I29 x 17, where N, x N, 
represents N, lines 5 = constant and N, lines q = constant. Three Reynolds rmmb 
were taken to investigate the behaviour of the algorithms with changing Reyno 
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TABLE I 

Performance of Relaxation Method (i). 
Number of Multigrid Iterations to Convergence 

Re (Reynolds number) 

Grid 50 250 1000 

129 x 17 8 11 14 
129 x 33 7 10 13 
257 x 33 8 13 14 

number, these being Re = 50, 250, and 1000. For the case Re = 50 the initial 
solution used was Poiseuille flow throughout the region and for the higher 
Reynolds numbers the initial solution was taken to be the converged solution at the 
next lower Reynolds number. 

In the multigrid process the cycling parameters given in Section 3.2 were held 
fixed at values which were found to give “optimal” convergence rates (in the sense 
of minimising overall CPU times to convergence in a series of numerical 
experiments). These parameter values were 

vb= 1, v,= 1, v, = 2, y = 2. 

Convergence was considered to have been achieved when the root-mean-square 
(rms) values of changes made to both 5, $ were less than a prescribed tolerance, 
which for these tests was set at 1.0 x 10p4. The choice of W-cycles (y = 2) provides a 
more robust algorithm: use of the less expensive V-cycles (y = 1) can in certain 
cases result in the need for further underrelaxation parameters. For the related 
problem of the solution of the biharmonic equation, Linden [6] found that 
V-cycles could lead to divergence. 

Numerous variations of boundary relaxation were attempted with method (i), 
including distributing changes to the adjacent nodes and solving for the boundary 
nodes within the ALGS iteration. However, the variations in boundary relaxation 

TABLE II 

Performance of Relaxation Method (ii). 
Number of Multigrid Iterations to Convergence 

Re (Reynolds Number) 

Grid 50 250 1000 

129x17 6 6 8 
129 x 33 6 7 I 
257 x 33 6 7 9 
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made no significant difference to the performance of the method. For all versions of 
method (i), to obtain a convergent process it was necessary to use underrelaxation 
of both the boundary and the interior equations. Underrelaxation values of 0.5 were 
used for all the equations: significantly larger values led to divergence or mu 
slower convergence. Table I gives the performance of method (i) for ail three gri 
and Reynolds numbers, in terms of multigrid iterations to convergence. 

One important point to note from Table I is that for any given Reynolds number 
the method gives approximately grid-independent convergence, which may lead one 
to presume that the optimum multigrid convergence had been achieved. I-Iowever, 
this can be seen not to be the case. By implementing the algorithm using rel 
method (ii) an improvement on the performance of method (i) can be a&i 

With an underrelaxation parameter of 0.5 used for the boundary relaxation, no 

Re= 50 

I I I I I I 
1 z 3 4 5 

c 
6 7 

iteration “umber 

FIG. 3. Max(log(rms defect)) against iteration number for the 129 x 33 grid at Re = SO, 250, 1 
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FIG. 4. Max(log(rms dkfect)) against iteration number for grid 1 (129 x 17) and grid 3 (257 x 33) at 
Re = 250. 

underrelaxation was required for the interior equations with any combination of 
grid and Reynolds number. One peculiarity at Re = 50 was that a slight 
improvement in performance could be achieved by using an underrelaxation 
parameter of 0.75 for both the interior and boundary equations. Table II gives the 
best performances of the algorithm using relaxation method (ii), in terms of 
multigrid iterations to convergence. 

Comparison between Tables I and II shows that the convergence rates for 
method (ii) are far less affected by increasing Reynolds number than those for 
method (i). Figure 3 shows the convergence of method (ii) on the 129 x 33 grid for 
each of the three Reynolds numbers. The maximum of the logs of the rms values of 

TABLE III 

Approximate CPU Seconds to Convergence for The 
Nonlinear Multigrid and One-Grid Methods at Re = 50 

Grid 
Nonlinear 
Multigrid One-grid 

129 x 17 140 440 
129 x 33 270 1630 
257 x 33 560 5400 
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the defects is plotted against the iteration number. Again we note that, unlike the 
typical behaviour of a one-grid algorithm, the convergence rate of the multigri 
algorithm does not deteriorate as the grid is refined. The h-independent con- 
vergence is shown in Fig. 4, where max(log(rms defect)) is plotted against iteration 
number for the 129 x 17 and 257 x 33 grids at Re = 250. (Note that the di~erent 
aspect ratios of the 129 x 33 grid give a slightly different convergence rate and 
results are therefore not included in Fig. 4). This can be further illustrated by c 
paring the multigrid convergence times with those of the relaxation scheme used as 
a one-grid method. Numerical tests showed that the handling of the bou 
equations had little influence on the effectiveness of the relaxation scheme 
used as a solution technique on a single grid, relaxation method (ii) bei 
fastest of the methods tested. Table III gives the CPU times to convergence for the 
nonlinear-multigrid algorithm, using relaxation method (ii), and the corresponding 
one-grid method, at Reynolds number 50 (all CPU times given are for the 
Vax 1 l/782 computer). 

From Table III it can be seen that the nonlinear multigrid algorithm gives a 
reduction in CPU seconds of approximately 90% on the linest gri 

5. CONCLUSIONS 

A nonlinear multigrid algorithm has been described for solving t 
Navier-Stokes equations governing steady flow in a branching channel. A stream 
function and vorticity formulation was used with a numerically generated cur- 
vilinear coordinate system. Numerical experiments were performed using diffident 
methods of incorporating the derivative boundary condition for vorticity into 
the multigrid algorithm. The experiments have shown that when only the rigid 
boundary nodes are treated separately from the interior nodes during vorticity 
relaxation it is necessary to use underrelaxation at the interior nodes. Furthermore, 
the convergence rate diminishes substantially as the Reynolds number is increased. 
If the rigid boundary nodes and their nearest interior neighbours are treated 
separately a more robust algorithm is produced. No interior underrelaxat’ 
is required and the resulting algorithm is almost grid and Reynolds num 
independent. Results show that this multigrid algorithm gives a large reduction 
on computing time relative to the relaxation scheme used as a one-grid method. 
The value of this work is in the demonstration that proper treatment of the 
vorticity boundary condition is readily achieved in a nonlinear multigrid algorit 
for the Navier-Stokes equations in boundary-fitted coordinates. 
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